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If oi2 = aa2 = os2, then the solution exists (see Note 1). Let us consider the case when 
tii2 # a22 (similarly we can consider the cases o12 # os2 and 022 $- 0~~1. Equations 

(3,9) and (3.13) representing a system of two linear equations for three unknown diago- 

nal elements of the matrix B have compatible solutions if oi2 # 022, since in this case 

the rank of the matrix of the coefficients accompanying the unknowns, is two. Equations 

(3,10) and (3.12) representing a system of two linear equations for three unknown pro- 

ducts b,,b,r, b,,bsl and bzsbs2 have compatible solutions for any diagonal elements of 

the matrix B and any value of the product blaba. Let us set b,, = 0. Then Eq, (3.11) 
has a solution relative to b,, since one can always make b,,b,, # 0. This proves that a 

solution exists, therefore the upper limit of the degree of stability which is equal to 

(qo202) lja, can be attained. 

In the case of Problem 2, the attainability of the upper limit can be proved in the 

same manner. 
The author thanks F. L. Chernous’ko for formulating the problem and valuable com- 

ments, and V .B.Lidskii for the assessment of the paper. 
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The motion of a heavy flexible filament being unwound from a rotor is investi- 
gated. The aerodynamic drag is taken into account. The possibility is shown of 
realizing a steady-state process and its investigation is given. 

Rapidly-rotating rotors are often fabricated by means of multilayer filament windings 
[ 11. When one of the peripheral turns is ruptured, the effect of aerodynamic drag can 
prevent complete unwinding of the filament. It is of interest to investigate the possibi- 
lity of a stationary rotational process for an incompletely unwound filament in the case 
of a constant angular rotor velocity and the effect of aerodynamic drag, and also to de- 
termine the shape and tension of the free part of the filament (not lying on the rotor), 
the limit radius of the unwinding and the force of interaction between this part of the 
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filament and the rotor. 
We consider the stationary process to be possible, and let us find the shape and tension 

of the free part of the filament. We assume that the filament performs planar motion by 
rotating at a constant angular velocity equal 
to the rotor velocity. We neglect the trans- 
verse dimensions of the filament. We con- 

sider the filament flexible, and the radius 

of the rotor to equal unity. 

Let us consider the aerodynamic drag, 
referred to unit length, which acts on a fila- 

ment element, to be directed along the nor- 
mal to this element and to equal 

(1) 

F, = A I V, - V,, 1 2 sin2 ‘p, A = const 

Fig. 1 

Here V, is the filament velocity, V,, is 
the stream velocity, and cp is the angle be- 

tween the tangent to the element and the 
direction of the relative velocity of the fil- 

ament, This model of the aerodynamicdrag 

is used extensively in investigations of the 
shape of a fixed filament in an air stream 

(see PI, p. 105). 
Considering the equilibrium of the filament element (Fig. 1) and pojecting the iner- 

tial and external forces on the normal and the tangent to the filament (taking into ac- 
count that F, is directed along the normal to the filament), we have 

T1’ = - y 02 p cos a (2) 

TK = y 02 p sin CL - F, (3) 

Here o is the angular rotor velocity, y is the filament density, i.e. the mass per unit 

length of filament, p is the radius-vector of the filament element with origin at the cen- 

ter of rotation, a is the angle between the tangent to the element and p, I’ is the arc- 

length measured from the point P, K is the filament curvature, and T is the filament ten- 
sion. 

Let R be the magnitude of the greatest filament radius-vector which we shall call 
the grazing radius. Then, noting that cos a = pl’, and integrating (2) taking account of 

the condition I = 0 at P = R, we have 

T (p) = 1/2 yo2 (R” - p2) (4) 

We note that the tension of an outer turn of the filament lying on the rotor should be 
greater than yo’, otherwise this turn could not stay on the rotor. Now, taking into ac- 
count that the filament tension has no jump at the point P, i.e. at the point of tangency 
of the free section with the rotor, and also recalling that the radius of the rotor is equal 

to unity, we obtain ‘/z yo2 (R2 - 1) > yo2 from (4). We hence find that R > r/S, in 
the case of a stationary process, no matter what the aerodynamic drag. 

Let us find Fc as a function of p and a. We consider the rotor velocity to be suffici- 
ently high so that the boundary layer thickness on the rotor could be neglected and the 



706 M.Iu.Ochan 

air surrounding the rotor can be assumed immobile. Now, taking into account that V, = 
op, we write (1) in the form 

F, = A w2p2 sin2 cp = A 02p2 cos2 CC (5) 

Moreover, noting that K = p-l(p sin cc),,’ (see 13, 4]), we obtain from (2) 

E.&!? (p sin r),’ = !, sin c1 - ap* co52 2, .,I n L1 _ 
r 

We obtain the Riccati equation from this latter by substituting Y = P sin a 

Y, = zp ?/ + a?-- .p 
R2-p2 

Here there is an unknown constant R (the grazing radius) in the right side, which can 
be determined after integrating (6) with the following boundary conditions 

y=i for p=l (7) 

y + ay2 - up2 = 0 for p = R (8) 

Condition (7) means that the free section of the filament has no break at the point of 

contact with the rotor, and the filament is tangent to the rotor. Condition (8) means that 
the derivative y, ’ is bounded for p = R, i.e. the curvature is finite at the point p = R. 

Introducing the new variables t and u (t), connected to o and Y by the relationships 

t-=&z v/R2_ppz, t 

rG”t 
’ 2 uy 

(9) 

we have from (6) 
r~tt” + 3 tu!’ + (t - 4 GR”) u = () (16) 

Let us still consider the quantity I/i + 4 n2R2 not to be an intger. Then integrating, 
we have 

U = + [CIJ, + cz.J_,], v = Jfl + 4a2R2 (11) 

Here ci and cs are constants of integration, J, = J, (t), J_, := J_,(t) are Bessel func- 
tions of order v and -v. 

Taking into account the recurrence relationships for the Bessel functions and returning 

to y, we obtain 
2ay = - 1 + v (- cJ,+ CZJ_“) + t (cl.r,_l j- c2J_y_l) 

CIJ, + czJ_, 

(12) 

Condition (8) can be rewritten as follows : 

2ay JPzH = - 1 * VI + 4a2K2 

Let us consider sin a > 0 (this inequality is conserved particularly when the curve has 

no inflection). Then the function Y is positive everywhere and, taking account of (11). 
we can write the last condition thus: 

2ay It=0 k- v - 1 (13) 

Only v>i has physical meaning, and besides, we still consider noninteger v, hence, 

by dividing numerator and denominator of the last member in (12) by J_” we obtain 

;i$ y (t) = & (-- v - 1) for c2 #O 

Therefore, condition (13) is not satisfied for c2 # 0 . Consequently, c2 = 0. After sub- 

stituting c, = 0 into (12) c, is also canceled. As a result we have 
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1 
Y”z;; 

[ 
-6v+tk?] 

” 

(14) 

Here y, t and Y are expressed in terms of the initial quantities p and a as follows: 

t =2a JfRz-pa, y = p sin a, v=Jmpm (15) 

Taking into account that limt_.,, tJ,_, / J, = 2v, it can be noted that this solution 
satisfies condition (13). 

In the case of integer v we find that (14) isvalid alsc for integer v byrepresentingthe 

solution of (10) as the sum of Bessel and Neumann functions and performing analogous 

computations. 
The quantity v remains unknown in (14) and should be found from the condition (7). 

As is seen from (9). the value p = 1 corresponds to the value t = to = 2 a v-1 

Consequently, v is found from the following system of aanscendental equations: 

2a + 1 f v = ~o.J,_~ (to) /J, (to), to =‘2a vm, v = 61 + 4nRs (16) 

Therefore, we hence find v for a given value a , where we incidentally find the mag- 

nitude of the grazing radius R. According to (14) the tension of each point of the fila- 
ment will consequently be known, as will the tension at the point of contact with the 
rotor also, i.e. the force and moment with which the free section of the filament act 

on the rotor. 
For values of v equal to half an odd number, the function J, and therefore Y alsoare 

expressed in terms of elementary functions. For v = 1.5 we have 

J,_, (t) / J, (t) = t sin t / (sin t - t cost) 

Using the recurrence relationship 

J,_, 0) / J, (t) = t 12 v - t J, it) / J,, @)1-l 

we find Y in (14) for each successive v. 
The first of equations (16) becomes 

2a+2.5 = to0 sin to 
sin to - to cos to 

for v=1.5 

2a+3.5= to2 (sin t0 - t0 co9 to) 

(3 - toz) sin to - 3to co9 to 
for v=2.5 

etc. Consequently, we obtain from (16) that a = 0.12, Ra = 21 for v = 1.5, correspond 

to a = 0.38, R2 = 9.1 for v = 2.5, a = 0.75, R2 = 5 for v = 3.5 , etc. Therefore, the 
grazing radius decreases as the aerodynamic drag grows. 

The tension at the point of contact P is computed by means of (4). Substituting p = 1 

and the values of )1 found above into (4) we obtain that the quantity T (1) / (+) equals 

10, 4.1, 2.5, etc. for a =0.12, 0.38,0.75, etc. As we see T (I), and therefore, the mo- 
ment acting from the filament on the rotor also diminish as the aerodynamic drag grows. 

Let us examine the case of small a, which corresponds to a large specific mass of fila- 

ment or small aerodynamic drag. 
The quantity to J,, / J, in (16) can be represented as follows: 

t0 
Jv-1 w 

_z 
2v 1 - (to / 2)%-l + S (to) s = 0 (to”) 

J, (to) I - (to/ 2)2 (v + I)-1 + s (to) ’ s = 0 (to’) (17) 
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Taking account of this expansion in an investigation of the system (16) as to + 0, we 
find 

to 4 0, v4 1, afP-9 2 for u + 0 (18) 

Therefore R 4 co as a -f 0, i.e. as should have been expected, there can be no sta- 
tionary process for an incompletely unwound filament for a = 0 (which corresponds to 

filament rotation in a vacuum). We find from (4) that Ta -t yes as a ^-t 0, p # R, i. e. 
the tension at each fixed radius increases without limit as a diminishes. 

Since tp + 0 as a -+ 0, then we have to I 2 < i. for sufficiently small a. Consequent- 
ly, according to the leibnitz rule for an ~ltemating-sip decreasing series, for sufficiently 
small a, we have according to (17) 

o<s < (to /2Y 
2 (Y + 2) (v + i) ’ 

s>s 

We now obtain from (17) 
to J”, (to) 

->2v 1 - (to / 2)%-l 
J, PO) 1 - (to / 2)s (v + i)-’ 

S~sti~ting this inequality into (16), we have (taking into account that Y > i) 

v<2+a- v as+1--6a 

Since v = VW,, then 

R= < &[2-a+& - (2 + a) )/a2 + 1 - 6n] 

For example, let a < 0.12. Then 

R”<21a+-9.5 (19) 

We have Rs < 25 from this inequality for Q = 0.12, while the exact value of R2 

found above is 21 in this case. Thus, the grazing radius R which grows without limit as 
a decreases, remains less than the quantity vr+m in conformity with (18). 

From (4) and (19) we obtain the following inequality for tension at the point P (for 
p = 1): 

2 I,, < yws (i / a + 4.25) 

The author is grateful to N, V. Gulia for valuable comments during preparation of this 

Paper* 
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